Aerospace, Vol. 12, Pages 756: Aerial Vehicle Detection Using Ground-Based LiDAR


Aerospace, Vol. 12, Pages 756: Aerial Vehicle Detection Using Ground-Based LiDAR

Aerospace doi: 10.3390/aerospace12090756

Authors:
John Kirschler
Jay Wilhelm

Ground-based LiDAR sensing offers a promising approach for delivering short-range landing feedback to aerial vehicles operating near vertiports and in GNSS-degraded environments. This work introduces a detection system capable of classifying aerial vehicles and estimating their 3D positions with sub-meter accuracy. Using a simulated Gazebo environment, multiple LiDAR sensors and five vehicle classes, ranging from hobbyist drones to air taxis, were modeled to evaluate detection performance. RGB-encoded point clouds were processed using a modified YOLOv6 neural network with Slicing-Aided Hyper Inference (SAHI) to preserve high-resolution object features. Classification accuracy and position error were analyzed using mean Average Precision (mAP) and Mean Absolute Error (MAE) across varied sensor parameters, vehicle sizes, and distances. Within 40 m, the system consistently achieved over 95% classification accuracy and average position errors below 0.5 m. Results support the viability of high-density LiDAR as a complementary method for precision landing guidance in advanced air mobility applications.



Source link

John Kirschler www.mdpi.com