Agriculture, Vol. 15, Pages 2149: On Improving the Performance of Kalman Filter in Denoising Oil Palm Hyperspectral Data
Agriculture doi: 10.3390/agriculture15202149
Authors:
Imanurfatiehah Ibrahim
Hamzah Arof
Mohd Izzuddin Anuar
Mohamad Sofian Abu Talip
A common drawback of denoising methods of images is that all pixels are filtered regardless of the amount of noise affecting them individually. Since the essence of denoising is lowpass filtering, subjecting clean pixels to denoising results in blurring. In this paper, a filtering framework is introduced where a fitness function is incorporated in a Kalman filter (KF) to assess the suitability of accepting the value recommended by KF or retaining the existing value of a pixel. Furthermore, a limit on the number of iterations is imposed to avoid over filtering that leads to shrinkage of pixel value ranges of the channels and loss of spectral signatures. In post processing, the means of the filtered channels are shifted to their original values prior to filtering, to spread the pixel value ranges and regain important spectral signatures. The experiments involve the implementation of KF, extended Kalman filter (EKF), Kalman smoother (KS), extended Kalman smoother (EKS) and moving average filter (MAF) in filtering noisy channels of oil palm hyperspectral data under the same framework. Their performances are compared in terms of execution time, SNR gain, NIQE and SSIM metrics. In the second set of experiments, the performance of the improved KF with a fitness function and mean restoration is compared to those of KF and MAF. The results show that the improved KF outperforms the other two filters in the spectral signature characteristics and pixel value ranges of the denoised channels.
Source link
Imanurfatiehah Ibrahim www.mdpi.com