Agriculture, Vol. 16, Pages 65: Forecasting Crop Yields in Rainfed India: A Comparative Assessment of Machine Learning Baselines and Implications for Precision Agribusiness
Agriculture doi: 10.3390/agriculture16010065
Authors:
Amir Karbassi Yazdi
Claudia Durán
Iván Derpich
Gonzalo Valdés González
Machine learning (ML) has emerged as a practical approach to forecasting crop yields in climate-vulnerable, rainfed agricultural systems where production uncertainty is strongly influenced by monsoon variability. In India’s semi-arid and sub-humid regions, reliable yield forecasts are critical for agribusiness planning and managing climate risks. This study presents a standardized evaluation of three widely used ML forecasting models—Linear Regression (LR), Random Forest (RF), and Support Vector Regression (SVR)—for rainfed cereal yields in eight Indian administrative divisions from 2000 to 2025. The study applied a unified methodological framework that included data cleaning, z-score normalization, domain-informed feature selection, strict chronological train–test splitting, and five-fold cross-validation. The dataset integrates agroclimatic and soil variables, including temperature, precipitation, relative humidity, wind speed, and soil pH, comprising approximately 1250 division-year observations. Model performance was assessed on an independent, temporally held-out test set using root mean square error (RMSE), mean absolute error (MAE), and R2. The results show that RF provides the most robust predictive performance under realistic forecasting conditions. It achieved the lowest RMSE (0.268 t/ha) and the highest R2 (0.271), outperforming LR and SVR. Although the explained variance is modest, it reflects strict temporal validation and the inherent uncertainty of rainfed systems. Feature importance analysis highlights temperature and precipitation as dominant yield drivers. Overall, this study establishes a conservative and reproducible baseline for operational machine learning (ML)-based yield forecasting in precision agribusiness.
Source link
Amir Karbassi Yazdi www.mdpi.com
