Agronomy, Vol. 15, Pages 2549: Research Trends in Evaluation of Crop Water Use Efficiency in China: A Bibliometric Analysis
Agronomy doi: 10.3390/agronomy15112549
Authors:
Tianci Wang
Yutong Xiao
Jiongchang Zhao
Di Wang
Water scarcity has become a significant constraint to agricultural development in China. In this study, we employed bibliometric methods to systematically review the current research on crop water use efficiency (WUE) and the development trends in the North China Plain (NCP) and Northwest China (NWC). We analyzed 1569 articles (NCP = 788; NWC = 781) from the Web of Science Core Collection (1995–2025) using visualization tools such as CiteSpace and VOSviewer to investigate annual numbers of publications, leading scholars and research institutions, and then to map keyword co-occurrence and co-citation structures. Our results showed that keyword clustering exhibited high structural quality (NCP: Q = 0.7345, S = 0.8634; NWC: Q = 0.758, S = 0.8912), supporting reliable thematic interpretation. The bibliometric analysis indicates a steady growth in annual publications since 1995, with the Chinese Academy of Sciences and China Agricultural University as leading contributors. From 1995 to 2005, studies centered on irrigation, yield and field-scale WUE, emphasizing the optimization of irrigation strategies and crop productivity. During 2006–2015, the thematic focus has broadened to encompass nitrogen use efficiency, crop quality and eco-environmental performance, thereby moving toward integrated evaluation frameworks that capture ecological synergies. Since 2016, the literature now emphasizes system integration, regional adaptability, climate-response mechanisms and the ecological co-benefits of agricultural practices. Future studies are expected to incorporate indicators such as crop quality, water footprint and carbon isotope indicators to support the sustainable development of agricultural water use. This study offers insights and recommendations for developing a comprehensive crop WUE evaluation framework in China, which will support sustainable agricultural water management and the realization of national “dual carbon” targets.
Source link
Tianci Wang www.mdpi.com

