Agronomy, Vol. 16, Pages 489: Estimation of Winter Wheat SPAD Values by Integrating Spectral Feature Optimization and Machine Learning Algorithms
Agronomy doi: 10.3390/agronomy16040489
Authors:
Yufei Wang
Xuebing Wang
Jiang Sun
Zeyang Wen
Haoyong Wu
Lujie Xiao
Meichen Feng
Yu Zhao
Xianjie Gao
The chlorophyll content of plant leaves measured by the soil plant analysis development (SPAD) is an important indicator for measuring crop growth status and irrigation effect. The rapid, non-destructive and efficient estimation of crop SPAD values is of great significance to the field management of crops. In this study, the canopy hyperspectral reflectance and SPAD values of winter wheat were obtained, and the spectral curve was changed through four spectral processing methods, including first-order differential (FD), second-order differential (SD), multivariate scattering correction (MSC), and Savitzky–Golay smoothing (SG) to improve the correlation between canopy spectral reflectance and SPAD. Furthermore, to investigate and evaluate the performance of various vegetation indices (VIs) in estimating SPAD values for winter wheat, existing published indices were optimized using random band combinations derived from multiple canopy spectral transformations. The optimized vegetation index was used as the input variable of the model, and six machine learning algorithms, including random forest (RF), long short-term memory network (LSTM), multilayer perceptron (MLP), deep recurrent neural network (Deep-RNN), gated recurrent unit (GRU), and convolutional neural network (CNN), were used to construct the winter wheat SPAD values estimation model, and the model was verified. The experimental results demonstrate that, when utilizing an equivalent number of optimized vegetation indices as input, the GRU-based model achieves higher estimation accuracy compared to other models. Specifically, the coefficient of determination (R2) is improved by 0.12 compared to the RF model, by 0.03 compared to the LSTM model, by 0.12 compared to the MLP model, by 0.02 compared to the Deep-RNN model, and by 0.02 compared to the CNN model. At the same time, the GRU model also has a lower root mean square error (RMSE) and relative error (RE) of 7.37 and 24.90%, respectively. This study provides valuable hyperspectral remote sensing technology support for the implementation of winter wheat SPAD values estimation in the field.
Source link
Yufei Wang www.mdpi.com
