AI, Vol. 6, Pages 246: Intelligent Advanced Control System for Isotopic Separation: An Adaptive Strategy for Variable Fractional-Order Processes Using AI
Authors:
Roxana Motorga
Vlad Mureșan
Mihaela-Ligia Ungureșan
Mihail Abrudean
Honoriu Vǎlean
Valentin Sita
This paper provides the modeling, implementation, and simulation of fractional-order processes associated with the production of the enriched 13C isotope due to chemical exchange processes between carbamate and CO2. To demonstrate and simulate the process most effectively, an execution of a new approximating solution of fractional-order systems is required, which has become possible due to the utilization of advanced AI methods. As the separation process exhibits extremely strong nonlinearity and fractional-order-based performance, it was similarly necessary to utilize the fractional-order system theory to mathematically model the operation, which consists of the comparison of its output with an integrator function. The learning of the dynamic structure’s parameters of the derived fractional-order model is performed by neural networks, which are AI-based domain solutions. Thanks to the approximations executed, the concentration dynamics of the enriched 13C isotope can be simulated and predicted with a high level of precision. The solutions’ effectiveness is corroborated by the model’s response comparison with the reaction of the actual process. The current implementation uses neural networks trained specifically for this purpose. Furthermore, since the isotopic separation processes are long-settling-time processes, this paper proposes some control strategies that are developed for the 13C isotopic separation process, in order to improve the system performances and to avoid the loss of enriched product. The adaptive controllers were tuned by imposing them to follow the output of a first-order-type transfer function, using a PI or a PID controller. Finally, the paper confirms that AI solutions can successfully support the system throughout a range of responses, which paves the way for an efficient design of the automatic control for the 13C isotope concentration. Such systems can similarly be implemented in other industrial processes.
Source link
Roxana Motorga www.mdpi.com