Algorithms, Vol. 18, Pages 155: Text-Guided Synthesis in Medical Multimedia Retrieval: A Framework for Enhanced Colonoscopy Image Classification and Segmentation


Algorithms, Vol. 18, Pages 155: Text-Guided Synthesis in Medical Multimedia Retrieval: A Framework for Enhanced Colonoscopy Image Classification and Segmentation

Algorithms doi: 10.3390/a18030155

Authors:
Ojonugwa Oluwafemi Ejiga Peter
Opeyemi Taiwo Adeniran
Adetokunbo MacGregor John-Otumu
Fahmi Khalifa
Md Mahmudur Rahman

The lack of extensive, varied, and thoroughly annotated datasets impedes the advancement of artificial intelligence (AI) for medical applications, especially colorectal cancer detection. Models trained with limited diversity often display biases, especially when utilized on disadvantaged groups. Generative models (e.g., DALL-E 2, Vector-Quantized Generative Adversarial Network (VQ-GAN)) have been used to generate images but not colonoscopy data for intelligent data augmentation. This study developed an effective method for producing synthetic colonoscopy image data, which can be used to train advanced medical diagnostic models for robust colorectal cancer detection and treatment. Text-to-image synthesis was performed using fine-tuned Visual Large Language Models (LLMs). Stable Diffusion and DreamBooth Low-Rank Adaptation produce images that look authentic, with an average Inception score of 2.36 across three datasets. The validation accuracy of various classification models Big Transfer (BiT), Fixed Resolution Residual Next Generation Network (FixResNeXt), and Efficient Neural Network (EfficientNet) were 92%, 91%, and 86%, respectively. Vision Transformer (ViT) and Data-Efficient Image Transformers (DeiT) had an accuracy rate of 93%. Secondly, for the segmentation of polyps, the ground truth masks are generated using Segment Anything Model (SAM). Then, five segmentation models (U-Net, Pyramid Scene Parsing Network (PSNet), Feature Pyramid Network (FPN), Link Network (LinkNet), and Multi-scale Attention Network (MANet)) were adopted. FPN produced excellent results, with an Intersection Over Union (IoU) of 0.64, an F1 score of 0.78, a recall of 0.75, and a Dice coefficient of 0.77. This demonstrates strong performance in terms of both segmentation accuracy and overlap metrics, with particularly robust results in balanced detection capability as shown by the high F1 score and Dice coefficient. This highlights how AI-generated medical images can improve colonoscopy analysis, which is critical for early colorectal cancer detection.



Source link

Ojonugwa Oluwafemi Ejiga Peter www.mdpi.com