Algorithms, Vol. 19, Pages 104: Data-Driven Planning for Casualty Evacuation and Treatment in Sustainable Humanitarian Logistics
Algorithms doi: 10.3390/a19020104
Authors:
Shahla Jahangiri
Mohammad Bagher Fakhrzad
Hasan Hosseini Nasab
Hasan Khademi Zare
Majid Movahedi Rad
After large-scale disasters, swift and robust humanitarian logistics are crucial to provide timely assistance to injured people and displaced individuals. This study proposes a bi-objective optimization model for humanitarian logistics network design to simultaneously consider the facility location-allocation decisions, along with the transportation operation issues under uncertainty. The framework addresses the needs of both severely and mildly injured casualties and homeless populations. A hybrid robust optimization approach is accordingly developed that incorporates scenario-based, box-type, and polyhedral uncertainty representations to handle the uncertainty of factors such as casualty volume, travel times, facility failures, and demands for resources. More recently, machine learning methods have been applied to classify casualties and displaced individuals with respect to their geographic distribution and severity, further improving demand estimates and operational efficacy. This study seeks to develop a data-driven and robust optimization framework for designing humanitarian logistics networks under uncertainty, enabling decision-makers and emergency planners to gain insights into enhancing casualty evacuation, medical treatment, and shelter allocation in disaster response operations. The case of the Kermanshah earthquake in Iran is used for assessing the applicability of the model. The computational experiments and comparative analyses conducted show that the developed model exhibits high efficiency and robustness. The results are useful for guiding disaster preparedness and strategic decisions in humanitarian logistics. Besides operational performance, the model optimizes sustainability in the area of emergency response based on cost efficiency and social fairness, as underlined by SDGs 3 and 11.
Source link
Shahla Jahangiri www.mdpi.com
