Algorithms, Vol. 19, Pages 13: Revealing Spatiotemporal Deformation Patterns Through Time-Dependent Clustering of GNSS Data in the Japanese Islands
Algorithms doi: 10.3390/a19010013
Authors:
Yurii Gabsatarov
Irina Vladimirova
Dmitrii Ignatev
Nadezhda Shcheveva
Understanding the spatial and temporal structure of crustal deformation is essential for identifying tectonic blocks, assessing seismic hazard, and detecting precursory deformation associated with major megathrust earthquakes. In this study, we analyze twenty years of continuous GNSS observations from the Japanese Islands to identify coherent deformation domains and anomalous regions using an integrated time-dependent clustering framework. The workflow combines six machine learning algorithms (Hierarchical Agglomerative Clustering, K-means, Gaussian Mixture Models, Spectral Clustering, HDBSCAN and consensus clustering) and constructs a set of deformation-related features including steady-state velocities, strain rates, co-seismic and post-seismic displacements, and spatial distance metrics. Optimal cluster numbers are determined by validity metrics, and the most robust segmentation is obtained using a consensus approach. The resulting spatiotemporal domains reveal clear segmentation associated with major geological structures such as the Fossa Magna graben, the Median Tectonic Line, and deformation belts related to Pacific Plate subduction. The method also highlights deformation patterns potentially associated with the preparation stages of megathrust earthquakes. Our results demonstrate that machine learning-based clustering of long-term GNSS time series provides a powerful data-driven tool for quantifying deformation heterogeneity and improving the understanding of active geodynamic processes in subduction zones.
Source link
Yurii Gabsatarov www.mdpi.com

