Animals, Vol. 15, Pages 2822: Analysis of Relative Abundance Distribution and Environmental Differences for Blue Mackerel (Scomber australasicus) and Chub Mackerel (Scomber japonicus) on the High Seas of the North Pacific Ocean


Animals, Vol. 15, Pages 2822: Analysis of Relative Abundance Distribution and Environmental Differences for Blue Mackerel (Scomber australasicus) and Chub Mackerel (Scomber japonicus) on the High Seas of the North Pacific Ocean

Animals doi: 10.3390/ani15192822

Authors:
Heng Zhang
Hanji Zhu
Famou Zhang
Sisi Huang
Jianhua Wang
Delong Xiang
Yang Li
Yuyan Sun

The accurate assessment and management of Blue Mackerel (Scomber australasicus) and Chub Mackerel (Scomber japonicus) resources in the high seas of the Northwest Pacific are constrained by the persistent issue of data misreporting in catch records, which arises from their high morphological similarity. This study integrates fishery logbooks and field sampling data from Chinese purse seine fleets (2014–2023), along with key oceanographic factors—six of which were finally selected after correlation analysis. We introduce, for the first time, a Zero-One Inflated Beta Model (ZOIBM) to analyze the spatiotemporal distribution of the relative abundance of these two mackerel species. Furthermore, a Generalized Additive Model (GAM) was employed to reveal the environmental mechanisms driving their niche differentiation. The results show that the ZOIBM demonstrates excellent performance (R2 = 0.63, RMSE = 0.305), effectively quantifying the proportional composition of the two species in mixed catches. Spatially, high-abundance areas of Blue Mackerel were concentrated within 35–44° N, 145–160° E, with its proportion decreasing at higher latitudes. In contrast, Chub Mackerel exhibited an opposite latitudinal pattern, with its high-abundance areas covering a broader latitudinal range (35–47.5° N). The analysis of environmental drivers indicated that SST was the most critical factor for differentiation, while Chla and VO further amplified the divergence in resource utilization strategies between the species. From 2014 to 2023, the distribution centroids of both mackerel species showed significant northward and eastward shifts, and their spatial overlap has been continuously increasing. This research provides a methodological reference for the fine-scale assessment of co-occurring fish resources and offers a scientific basis for the sustainable management of the North Pacific mackerel fishery.



Source link

Heng Zhang www.mdpi.com