Applied Sciences, Vol. 15, Pages 10427: Microstructural Evolution and Mechanical Properties of Hybrid Al6060/TiB2–MWCNT Composites Fabricated by Ultrasonically Assisted Stir Casting and Radial-Shear Rolling


Applied Sciences, Vol. 15, Pages 10427: Microstructural Evolution and Mechanical Properties of Hybrid Al6060/TiB2–MWCNT Composites Fabricated by Ultrasonically Assisted Stir Casting and Radial-Shear Rolling

Applied Sciences doi: 10.3390/app151910427

Authors:
Maxat Abishkenov
Ilgar Tavshanov
Nikita Lutchenko
Kairosh Nogayev
Zhassulan Ashkeyev
Siman Kulidan

This work presents a comprehensive study on the fabrication, microstructural evolution, and mechanical performance of hybrid aluminum matrix composites based on Al6060 alloy reinforced with ~2 wt.% TiB2 and ~1 wt.% multi-walled carbon nanotubes (MWCNTs). The composites were produced via ultrasonically assisted stir casting followed by radial-shear rolling (RSR). The combined processing route enabled a uniform distribution of reinforcing phases and significant grain refinement in the aluminum matrix. SEM, EDS, XRD, and EBSD analyses revealed that TiB2 particles acted as nucleation centers and grain boundary pinning agents, while MWCNTs provided a network structure that suppressed agglomeration of ceramic particles and enhanced interfacial load transfer. As a result, hybrid composites demonstrated a submicron-grained structure with reduced anisotropy. Mechanical testing confirmed that yield strength (YS) and ultimate tensile strength (UTS) increased by 67% and 38%, respectively, in the cast state compared to unreinforced Al6060, while after RSR processing, YS exceeded 115 MPa and UTS reached 164 MPa, with elongation preserved at 14%. Microhardness increased from 50.2 HV0.2 (base alloy) to 82.2 HV0.2 (hybrid composite after RSR). The combination of ultrasonic melt treatment and RSR thus provided a synergistic effect, enabling simultaneous strengthening and ductility retention. These findings highlight the potential of hybrid Al6060/TiB2–MWCNT composites for structural applications requiring a balance of strength, ductility, and wear resistance.



Source link

Maxat Abishkenov www.mdpi.com