Applied Sciences, Vol. 15, Pages 10725: Dynamic Ultra-Fast Sorption/Desorption of Indigo Carmine onto/from Versatile Core-Shell Composite Microparticles
Applied Sciences doi: 10.3390/app151910725
Authors:
Florin Bucatariu
Larisa-Maria Petrila
Timeea-Anastasia Ciobanu
Marius-Mihai Zaharia
Marcela Mihai
The direct deposition of highly concentrated polyelectrolyte complexes based on poly(ethyleneimine) (PEI) and poly(sodium methacrylate) (PMANa) onto inorganic sand microparticles (F100 and F200) resulted in the formation of versatile core-shell composites with fast removal properties in dynamic conditions toward anionic charged pollutants. Herein, in situ-generated nonstoichiometric PEI/PMANa polyelectrolyte complexes were directly precipitated as a soft organic shell onto solid sand microparticles at a 5% mass ratio (organic/inorganic part = 5%, w/w%). The sorption of an anionic model pollutant (Indigo Carmine (IC)) onto the composite particles in dynamic conditions depended on the inorganic core size, the flow rate, the bed type (fixed or fluidized) and the initial dye concentration. The maximum sorption capacity, after 10 cycles of sorption/desorption of IC onto F100@P5% and F200@P5%, was between 16 and 18 mg IC/mL composite. The newly synthesized core-shell composites could immobilize IC at a high flow rate (8 mL/min), either from concentrated (CIC = 60 mg/L) or very diluted (CIC = 0.2 mg/L) IC aqueous solution, demonstrating that this type of material could be promising in water treatment or efficient in solid-phase extraction (concentration factor of 2000).
Source link
Florin Bucatariu www.mdpi.com