Applied Sciences, Vol. 15, Pages 4526: Performance Analysis of Downlink 5G Networks in Realistic Environments


Applied Sciences, Vol. 15, Pages 4526: Performance Analysis of Downlink 5G Networks in Realistic Environments

Applied Sciences doi: 10.3390/app15084526

Authors:
Aymen I. Zreikat
Hunseok Kang

Fifth-generation (5G) networks are the fifth generation of mobile networks and are regarded as a global standard, following 1G, 2G, 3G, and 4G networks. Fifth-generation, with its large available bandwidth provided by mmWave, not only provides the end user with higher spectrum efficiency, massive capacity, low latency, and high speed but is also a network designed to connect virtually everyone and everything together, including machines, objects, and devices. Therefore, studies of such systems’ performance evaluation and capacity bounds are critical for the research community. Furthermore, the performance of these systems should be investigated in realistic contexts while considering signal strength and restricted uplink power to maintain system coverage and capacity, which are also affected by the environment and the value of the service factor parameter. However, any proposed application should include a multiservice case to reflect the true state of 5G systems. As an extension of previous work, the capacity bounds for 5G networks are derived and analyzed in this research, considering both single and multiservice cases with mobility. In addition, the influence of different parameters on network performance, such as the interference, service factor, and non-orthogonality factors, and cell radii, is also discussed. The numerical findings and analysis reveal that the type of environment and service factor parameters have the greatest influence on system capacity and coverage. Subsequently, it is shown that the investigated parameters have a major impact on cell performance and therefore can be considered key indicators for mobile designers and operators to consider in planning and designing future networks. To validate these findings, some results are evaluated against ITU-T standards, while others are compared with related studies from the literature.



Source link

Aymen I. Zreikat www.mdpi.com