Applied Sciences, Vol. 15, Pages 5212: Lightweight Transformer with Adaptive Rotational Convolutions for Aerial Object Detection
Applied Sciences doi: 10.3390/app15095212
Authors:
Sabina Umirzakova
Shakhnoza Muksimova
Abrayeva Mahliyo Olimjon Qizi
Young Im Cho
Oriented object detection in aerial imagery presents unique challenges due to the arbitrary orientations, diverse scales, and limited availability of labeled data. In response to these issues, we propose RASST—a lightweight Rotationally Aware Semi-Supervised Transformer framework designed to achieve high-precision detection under fully and semi-supervised conditions. RASST integrates a hybrid Vision Transformer architecture augmented with rotationally aware patch embeddings, adaptive rotational convolutions, and a multi-scale feature fusion (MSFF) module that employs cross-scale attention to enhance detection across object sizes. To address the scarcity of labeled data, we introduce a novel Pseudo-Label Guided Learning (PGL) framework, which refines pseudo-labels through Rotation-Aware Adaptive Weighting (RAW) and Global Consistency (GC) losses, thereby improving generalization and robustness against noisy supervision. Despite its lightweight design, RASST achieves superior performance on the DOTA-v1.5 benchmark, outperforming existing state-of-the-art methods in supervised and semi-supervised settings. The proposed framework demonstrates high scalability, precise orientation sensitivity, and effective utilization of unlabeled data, establishing a new benchmark for efficient oriented object detection in remote sensing imagery.
Source link
Sabina Umirzakova www.mdpi.com