Applied Sciences, Vol. 15, Pages 7309: Dynamic Stall Mechanisms of Pitching Airfoil: IDDES Study Across Different Mach Numbers


Applied Sciences, Vol. 15, Pages 7309: Dynamic Stall Mechanisms of Pitching Airfoil: IDDES Study Across Different Mach Numbers

Applied Sciences doi: 10.3390/app15137309

Authors:
Simeng Jing
Fan Lu
Li Ma
Qijun Zhao
Guoqing Zhao

This study investigates dynamic stall mechanisms of a pitching NACA 0012 airfoil through high-fidelity computational fluid dynamics (CFD) simulations. The improved delayed detached eddy simulation (IDDES) method based on a sliding mesh system is constructed and validated against experimental airload measurements. The results demonstrate a good agreement and the capability to capture three-dimensional flow structures. Comparative analyses at two Mach numbers of 0.283 and 0.5 reveal distinct stall physics. At the Mach number of 0.283, a notable 9.7° delay is observed between the static and dynamic stall. The airfoil experiences a leading-edge stall dominated by a strong adverse pressure gradient and generates rapid airload variations. In addition, trailing-edge vortex (TEV) and secondary leading-edge vortices (LEVs) induce distinct airload fluctuations. After the shedding of primary vortices, secondary vortices develop. In contrast, the airfoil at the Mach number of 0.5 presents a reduced stall delay of 6.4° and a shock-induced dynamic stall characterized by dispersed, smaller vortices, which results in mild airload variations during stall. Aerodynamic damping analysis identifies stall delay as a primary contributor to negative damping. Enhanced pitching stability at the higher Mach number correlates with reduced stall delay and different LEV development characteristics. Results across varying reduced frequencies show that increasing reduced frequency delays the aerodynamic response and stall onset. At Ma = 0.283, this increasement promotes a divergent tendency in pitching motion, whereas at Ma = 0.5, it induces greater oscillatory stability attributed to distinct stall characteristics.



Source link

Simeng Jing www.mdpi.com