Applied Sciences, Vol. 15, Pages 7843: Research into Robust Federated Learning Methods Driven by Heterogeneity Awareness
Applied Sciences doi: 10.3390/app15147843
Authors:
Junhui Song
Zhangqi Zheng
Afei Li
Zhixin Xia
Yongshan Liu
Federated learning (FL) has emerged as a prominent distributed machine learning paradigm that facilitates collaborative model training across multiple clients while ensuring data privacy. Despite its growing adoption in practical applications, performance degradation caused by data heterogeneity—commonly referred to as the non-independent and identically distributed (non-IID) nature of client data—remains a fundamental challenge. To mitigate this issue, a heterogeneity-aware and robust FL framework is proposed to enhance model generalization and stability under non-IID conditions. The proposed approach introduces two key innovations. First, a heterogeneity quantification mechanism is designed based on statistical feature distributions, enabling the effective measurement of inter-client data discrepancies. This metric is further employed to guide the model aggregation process through a heterogeneity-aware weighted strategy. Second, a multi-loss optimization scheme is formulated, integrating classification loss, heterogeneity loss, feature center alignment, and L2 regularization for improved robustness against distributional shifts during local training. Comprehensive experiments are conducted on four benchmark datasets, including CIFAR-10, SVHN, MNIST, and NotMNIST under Dirichlet-based heterogeneity settings (alpha = 0.1 and alpha = 0.5). The results demonstrate that the proposed method consistently outperforms baseline approaches such as FedAvg, FedProx, FedSAM, and FedMOON. Notably, an accuracy improvement of approximately 4.19% over FedSAM is observed on CIFAR-10 (alpha = 0.5), and a 1.82% gain over FedMOON on SVHN (alpha = 0.1), along with stable enhancements on MNIST and NotMNIST. Furthermore, ablation studies confirm the contribution and necessity of each component in addressing data heterogeneity.
Source link
Junhui Song www.mdpi.com