Applied Sciences, Vol. 15, Pages 9818: Experimental Investigation of Wetting Materials for Indirect Evaporative Cooling Applications
Applied Sciences doi: 10.3390/app15179818
Authors:
Lanbo Lai
Xiaolin Wang
Gholamreza Kefayati
Eric Hu
Kim Choon Ng
The indirect evaporative cooling system, which exploits the water evaporation process to generate cooling loads without introducing additional moisture, has been recognised as a viable alternative to conventional air-conditioning systems. This acknowledgment is due to its attributes of energy efficiency and environmental friendliness. The meticulous selection of wetting materials for an indirect evaporative cooler is of paramount importance as it significantly influences the heat and mass transfer performance of the system. Therefore, this paper experimentally examined a novel material produced by laser-resurfaced technology, and this material was compared with four other distinct materials (kraft paper, cotton fibre, polyester fibre, and polypropylene + nylon fibre) while considering the wicking ability, water-holding capacity, and thermal response performance. The results revealed that the fabric materials, specifically cotton fibre and polyester fibre, exhibited outstanding water-wicking ability, with a vertical wicking distance exceeding 16 cm. Cotton fibre also demonstrated an exceptional water-holding ability, registering a value of 0.0754 g/cm2. In terms of thermal response performance, polypropylene + nylon fibre and the laser-resurfaced polymer achieved stable conditions within one minute, which could be attributed to the absence of a mechanical support plate and adhesive layer. All five materials attained stability after 4.2 min. Cotton and polyester fibres exhibited advantages in the duration of the evaporation process, maintaining stable conditions for 24 and 90 min, respectively. Based on the experimental results, appropriate water-spray strategies are proposed for each material.
Source link
Lanbo Lai www.mdpi.com