Applied Sciences, Vol. 16, Pages 1018: Numerical Simulation Study on Cuttings Transport Behavior in Enlarged Wellbores Using the CFD-DEM Coupled Method


Applied Sciences, Vol. 16, Pages 1018: Numerical Simulation Study on Cuttings Transport Behavior in Enlarged Wellbores Using the CFD-DEM Coupled Method

Applied Sciences doi: 10.3390/app16021018

Authors:
Yusha Fan
Yuan Lin
Peiwen Lin
Xinghui Tan
Qizhong Tian

As global energy demand rises, developing unconventional oil and gas resources has become a strategic priority, with horizontal well technology playing a key role. However, wellbore instability during drilling often leads to irregular geometries, such as enlargement or elliptical deformation, causing issues like increased friction and stuck-pipe incidents. Most studies rely on idealized, regular wellbore models, leaving a gap in understanding cuttings transport in irregular wellbore conditions. To address this limitation, this study employs a coupled CFD-DEM approach to investigate cuttings transport in enlarged wellbores by modeling the two-way interactions between drilling fluid and cuttings. The study analyzes the impact of various factors, including drilling-fluid flow rate, drill pipe rotational speed, rheological parameters, wellbore enlargement ratio, and ellipticity, on wellbore cleaning efficiency. The result indicates that increasing the flow rate in conventional wellbores reduces cuttings volume by 75%, while in wellbores with a 0.7 enlargement ratio, the same flow rate only reduces it by 37.8%, highlighting the limitations of geometric complexity. In conventional wellbores, increasing drill pipe rotation reduces cuttings volume by 42.6%, but in enlarged wellbores, only a 13% reduction is observed, indicating that rotation alone is insufficient in large wellbores. Optimizing drilling fluid rheology, such as by increasing the consistency coefficient from 0.3 to 1.2, reduces cuttings volume by 58.78%, while increasing the flow behavior index from 0.4 to 0.7 results in a 38.17% reduction. Although higher enlargement ratios worsen cuttings deposition, a moderate increase in ellipticity improves annular velocity and enhances transport efficiency. This study offers valuable insights for optimizing drilling parameters in irregular wellbores.



Source link

Yusha Fan www.mdpi.com