Applied Sciences, Vol. 16, Pages 455: Seismic Failure Mechanism Shift in RC Buildings Revealed by NDT-Supported, Field-Calibrated BIM-Based Models
Applied Sciences doi: 10.3390/app16010455
Authors:
Mehmet Esen Eren
Cenk Fenerli
This study proposes a field-calibrated, NDT-integrated BIM modeling framework to improve the reliability of post-earthquake assessment for reinforced concrete (RC) buildings. The approach combines destructive and nondestructive testing (NDT) data—including core drilling, Schmidt hammer, ultrasonic pulse velocity (UPV), and Windsor probe—through a site-specific WinSonReb regression model. The calibrated material properties (average compressive strength ≈ 18.6 MPa, CoV > 20%) were embedded into a Building Information Modeling (BIM) environment, producing an as-is, NDT-calibrated BIM model representing a Level-2 static digital twin of the structure. Nonlinear static pushover analyses performed in accordance with TBDY-2018 and ASCE 41-17 showed that the calibrated model exhibits a fundamental period of 0.85 s—approximately 18% longer than the uncalibrated BIM model. This elongation increased displacement demand and caused a shift in performance classification: while the uncalibrated model indicated Life Safety (LS), the calibrated model predicted behavior approaching Collapse Prevention (CP) in the Y direction. Furthermore, calibration reversed the predicted damage hierarchy, from ductile beam hinging to brittle column- and wall-controlled failure near elevator openings, consistent with post-event observations from the 2023 Kahramanmaraş earthquakes. These results demonstrate that integrating field-calibrated NDT data into BIM-based seismic models fundamentally alters both strength estimation and failure-mechanism prediction, reducing epistemic uncertainty and providing a more conservative basis for retrofit prioritization. Although demonstrated on a single case study, the proposed workflow offers a realistic and scalable pathway for NDT-supported seismic performance assessment of existing RC buildings.
Source link
Mehmet Esen Eren www.mdpi.com
