Applied Sciences, Vol. 16, Pages 714: Robust Self-Supervised Monocular Depth Estimation via Intrinsic Albedo-Guided Multi-Task Learning


Applied Sciences, Vol. 16, Pages 714: Robust Self-Supervised Monocular Depth Estimation via Intrinsic Albedo-Guided Multi-Task Learning

Applied Sciences doi: 10.3390/app16020714

Authors:
Genki Higashiuchi
Tomoyasu Shimada
Xiangbo Kong
Hiroyuki Tomiyama

Self-supervised monocular depth estimation has demonstrated high practical utility, as it can be trained using a photometric image reconstruction loss between the original image and a reprojected image generated from the estimated depth and relative pose, thereby alleviating the burden of large-scale label creation. However, this photometric image reconstruction loss relies on the Lambertian reflectance assumption. Under non-Lambertian conditions such as specular reflections or strong illumination gradients, pixel values fluctuate depending on the lighting and viewpoint, which often misguides training and leads to large depth errors. To address this issue, we propose a multitask learning framework that integrates albedo estimation as a supervised auxiliary task. The proposed framework is implemented on top of representative self-supervised monocular depth estimation backbones, including Monodepth2 and Lite-Mono, by adopting a multi-head architecture in which the shared encoder–decoder branches at each upsampling block into a Depth Head and an Albedo Head. Furthermore, we apply Intrinsic Image Decomposition to generate albedo images and design an albedo supervision loss that uses these albedo maps as training targets for the Albedo Head. We then integrate this loss term into the overall training objective, explicitly exploiting illumination-invariant albedo components to suppress erroneous learning in reflective regions and areas with strong illumination gradients. Experiments on the ScanNetV2 dataset demonstrate that, for the lightweight backbone Lite-Mono, our method achieves an average reduction of 18.5% over the four standard depth error metrics and consistently improves accuracy metrics, without increasing the number of parameters and FLOPs at inference time.



Source link

Genki Higashiuchi www.mdpi.com