AppliedMath, Vol. 5, Pages 135: The SIOA Algorithm: A Bio-Inspired Approach for Efficient Optimization
AppliedMath doi: 10.3390/appliedmath5040135
Authors:
Vasileios Charilogis
Ioannis G. Tsoulos
Dimitrios Tsalikakis
Anna Maria Gianni
The Sporulation-Inspired Optimization Algorithm (SIOA) is an innovative metaheuristic optimization method inspired by the biological mechanisms of microbial sporulation and dispersal. SIOA operates on a dynamic population of solutions (“microorganisms”) and alternates between two main phases: sporulation, where new “spores” are generated through adaptive random perturbations combined with guided search towards the global best, and germination, in which these spores are evaluated and may replace the most similar and less effective individuals in the population. A distinctive feature of SIOA is its fully self-adaptive parameter control, where the dispersal radius and the probabilities of sporulation and germination are dynamically adjusted according to the progress of the search (e.g., convergence trends of the average fitness). The algorithm also integrates a special “zero-reset” mechanism, enhancing its ability to detect global optima located near the origin. SIOA further incorporates a stochastic local search phase to refine solutions and accelerate convergence. Experimental results demonstrate that SIOA achieves high-quality solutions with a reduced number of function evaluations, especially in complex, multimodal, or high-dimensional problems. Overall, SIOA provides a robust and flexible optimization framework, suitable for a wide range of challenging optimization tasks.
Source link
Vasileios Charilogis www.mdpi.com