Atmosphere, Vol. 16, Pages 1142: How Hydrometeors Varied with the Secondary Circulation During the Rapid Intensification of Typhoon Nangka (2015)


Atmosphere, Vol. 16, Pages 1142: How Hydrometeors Varied with the Secondary Circulation During the Rapid Intensification of Typhoon Nangka (2015)

Atmosphere doi: 10.3390/atmos16101142

Authors:
Lin Wang
Hong Huang
Ju Wang
Xinjie Ouyang
Xiaolin Ma
Zhen Wang

A comprehensive understanding of the evolution and phase transitions of hydrometeors during the development of tropical cyclones (TCs) is essential for advancing research on the mechanisms of TC intensity change. In this study, utilizing the Weather Research and Forecasting numerical model, we simulate the evolution of Super Typhoon Nangka (No. 1511), explore the relationship between the TC intensity variations and the internal hydrometeor distribution, and examine the secondary circulation characteristics. The results indicate that the total content of hydrometeor particles increased during the intensification of Typhoon Nangka. Ice-phase particles expanded outward radially as the typhoon intensified, while liquid-phase particles contracted inward. Ice-phase hydrometeor distributions varied in conjunction with TC intensity variations, whereas liquid-phase hydrometeor variations were closely related to the complex dynamic–thermodynamic–microphysical processes within the typhoon. The spatial pattern of the secondary circulation exhibits high consistency with the distribution of hydrometeor particles. Low-level radial inflow, upper-level radial outflow, and middle-level vertical updrafts played dominant roles in regulating the distribution and transport of particles at different stages. The intensification of Typhoon Nangka was primarily driven by water vapor convergence and the latent heat released by ascending liquid-phase particles near the eyewall, while the stagnation of its intensification was mainly attributed to the resistance exerted by descending ice-phase particles from upper levels and the heat consumption associated with their melting. These findings provide a foundation for better understanding how hydrometeors modulate TC intensity variations and offer valuable insights into energy conversion mechanisms during hydrometeor phase transitions under the influence of secondary circulations.



Source link

Lin Wang www.mdpi.com