Atmosphere, Vol. 16, Pages 1168: A Transfer Learning–CNN Framework for Marine Atmospheric Pollutant Inversion Using Multi-Source Data Fusion
Atmosphere doi: 10.3390/atmos16101168
Authors:
Xiaoling Li
Xiaoyu Liu
Xiaohuan Liu
Zhengyang Zhu
Yunhui Xiong
Jingfei Hu
Xiang Gong
The concentration characteristics of SO2, NO2, O3, and CO in the marine atmosphere are of great significance for understanding air–sea interactions and regional atmospheric chemical processes. However, due to the challenging conditions of marine monitoring, long-term continuous observational data remain scarce. To address this gap, this study proposes a Transfer Learning–Convolutional Neural Network (TL-CNN) model that integrates ERA5 meteorological data, EAC4 atmospheric composition reanalysis data, and ground-based observations through multi-source data fusion. During data preprocessing, the Data Interpolating Empirical Orthogonal Function (DINEOF), inverse distance weighting (IDW) spatial interpolation, and Gaussian filtering methods were employed to improve data continuity and consistency. Using ERA5 meteorological variables as inputs and EAC4 pollutant concentrations as training targets, a CNN-based inversion framework was constructed. Results show that the CNN model achieved an average coefficient of determination (R2) exceeding 0.80 on the pretraining test set, significantly outperforming random forest and deep neural networks, particularly in reproducing nearshore gradients and regional spatial distributions. After incorporating transfer learning and fine-tuning with station observations, the model inversion results reached an average R2 of 0.72 against site measurements, effectively correcting systematic biases in the reanalysis data. Among the pollutants, the inversion of SO2 performed relatively poorly, mainly because emission reduction trends from anthropogenic sources were not sufficiently represented in the reanalysis dataset. Overall, the TL-CNN model provides more accurate pollutant concentration fields for offshore regions with limited observations, offering strong support for marine atmospheric environment studies and assessments of marine ecological effects. It also demonstrates the potential of combining deep learning and transfer learning in atmospheric chemistry research.
Source link
Xiaoling Li www.mdpi.com