Atmosphere, Vol. 16, Pages 1190: Assessing Management Tools to Mitigate Carbon Losses Using Field-Scale Net Ecosystem Carbon Balance in a Ley-Arable Crop Sequence


Atmosphere, Vol. 16, Pages 1190: Assessing Management Tools to Mitigate Carbon Losses Using Field-Scale Net Ecosystem Carbon Balance in a Ley-Arable Crop Sequence

Atmosphere doi: 10.3390/atmos16101190

Authors:
Marie-Sophie R. Eismann
Hendrik P. J. Smit
Friedhelm Taube
Arne Poyda

Agricultural land management is a major determinant of terrestrial carbon (C) fluxes and has substantial implications for greenhouse gas (GHG) mitigation strategies. This study evaluated the net ecosystem carbon balance (NECB) of an agricultural field in an organic integrated crop–livestock system (ICLS) with a ley-arable rotation in northern Germany over two years (2021–2023). Carbon dioxide (CO2) fluxes were measured using the eddy covariance (EC) method to derive net ecosystem exchange (NEE), gross primary production (GPP), and ecosystem respiration (RECO). This approach facilitated an assessment of the temporal dynamics of CO2 exchange, alongside detailed monitoring of field-based C imports, exports, and management activities, of a crop sequence including grass-clover (GC) ley, spring wheat (SW), and a cover crop (CC). The GC ley acted as a consistent C sink (NECB: −1386 kg C ha−1), driven by prolonged photosynthetic activity and moderate biomass removal. In contrast, the SW, despite high GPP, became a net source of C (NECB: 120 kg C ha−1) due to substantial export via harvest. The CC contributed to C uptake during the winter period. However, cumulatively, it acted as a net CO2 source, likely due to drought conditions following soil cultivation and CC sowing. Soil cultivation events contributed to short-term CO2 pulses, with their magnitude modulated by soil water content (SWC) and soil temperature (TS). Overall, the site functioned as a net C sink, with an average NECB of −702 kg C ha−1 yr−1. This underscores the climate mitigation potential of management practices such as GC ley systems under moderate grazing, spring soil cultivation, and the application of organic fertilizers. To optimize CC benefits, their use should be combined with reduced soil disturbance during sowing or establishment as an understory. Additionally, C exports via harvests could be offset by retaining greater amounts of harvest residues onsite.



Source link

Marie-Sophie R. Eismann www.mdpi.com