Atmosphere, Vol. 16, Pages 1384: The 27-Day Oscillation in Ionospheric Total Electron Content Observed by GNSS


Atmosphere, Vol. 16, Pages 1384: The 27-Day Oscillation in Ionospheric Total Electron Content Observed by GNSS

Atmosphere doi: 10.3390/atmos16121384

Authors:
Klemens Hocke
Guanyi Ma

The 27-day oscillation in total electron content (TEC) is analysed by means of world maps of TEC. The TEC maps are derived from measurements of the ground receiver network of the Global Navigation Satellite System (GNSS) and are provided by the International GNSS Service (IGS). The observed 27-day oscillation in TEC is mainly due to the 27-day solar rotation period, which induces a 27-day oscillation in extreme ultraviolet radiation (EUV) of the Sun. Analysing the time interval from 2003 to 2020, cross-correlation of the 27-day oscillation of the solar MgII-index of the Solar Radiation and Climate Experiment (SORCE) and the 27-day oscillation in TEC shows an average time delay of about 1.1 days for the ionospheric response with respect to the solar EUV variation. The average correlation coefficient of the solar and the ionospheric variation is 0.85. The cross-correlation of the 27-day oscillation in solar radio flux F10.7 and the 27-day oscillation in TEC gives a time lag of about 1.3 days and an average correlation coefficient of 0.78. The world maps of the amplitude of the 27-day oscillation in TEC are discussed for the TEC data from 1998 to 2024. Finally, TEC composites are derived for F10.7 enhancement events and geomagnetic storms.



Source link

Klemens Hocke www.mdpi.com