Atmosphere, Vol. 16, Pages 980: Concentration Characteristics, Source Analysis, and Health Risk Assessment of Water-Soluble Heavy Metals in PM2.5 During Winter in Taiyuan, China
Atmosphere doi: 10.3390/atmos16080980
Authors:
Qingyu Hu
Chao Zhang
Yang Chen
Nan Pei
Yufeng Zhao
Lijuan Sun
Jie Lan
Fengxian Liu
Ziyong Guo
Ling Mu
Jiancheng Wang
Xinhui Bi
To address the research gap on water-soluble heavy metals (WSHMs) in Taiyuan, China, we conducted a winter campaign (18–29 January 2019) at an urban site to measure fifteen WSHMs (Zn, Fe, Mn, Ba, Cu, Se, As, Sb, Sn, Pb, Ni, V, Ti, Cd, and Co). The mean concentration of total WSHMs (∑WSHMs) in PM2.5 was 209.17 ± 187.21 ng m−3. Notably, the mass concentrations of ∑WSHMs on heavy pollution days (291.01 ± 170.64 ng m−3) were 224.8% higher than those on mild pollution days (89.61 ± 55.36 ng m−3). Principal component analysis (PCA) was applied in combination with absolute principal component score–multiple linear regression (APCS-MLR) to analyze pollution sources and their contributions. The results showed that the main sources of pollution were coal combustion and vehicle emissions (42.50%), along with the metallurgical industry and natural dust (34.47%). The carcinogenic and non-carcinogenic risks of WSHMs were assessed for both adults and children based on the United States Environmental Protection Agency’s (U.S. EPA) assessment guidelines and the International Agency for Research on Cancer (IARC) database. Children faced higher non-carcinogenic risks (hazard index = 2.37) than adults (hazard index = 0.30), exceeding the safety threshold (hazard index = 1). The total carcinogenic risk reached 2.20 × 10−5, exceeding the threshold value (1 × 10−6) for carcinogenic risk. Water-soluble arsenic (As) dominated both carcinogenic and non-carcinogenic risks in winter and was the riskiest element. These findings provide an essential basis for controlling PM2.5-bound WSHMs in industrialized areas.
Source link
Qingyu Hu www.mdpi.com