Batteries, Vol. 12, Pages 3: An Experimental and Modeling Study on Commercial Lithium Titanate Batteries with Different Cathode Materials


Batteries, Vol. 12, Pages 3: An Experimental and Modeling Study on Commercial Lithium Titanate Batteries with Different Cathode Materials

Batteries doi: 10.3390/batteries12010003

Authors:
Hao Li

This study presents a comparative analysis of the performance and modeling differences among lithium titanate oxide (LTO) batteries with three different cathode materials. An evaluation was conducted by performing performance tests over −20 °C to 25 °C at various current rates. Differences in open-circuit voltage curves, as well as charge and discharge capacities under different temperatures and C-rates, were systematically compared. At 25 °C, the NCM cathode enabled superior rate capability, retaining over 90% of its capacity at 8 C discharge, whereas the LCO-based cells exhibited significant capacity fade. Conversely, at −20 °C, the LCO cathode demonstrated better low-temperature performance, delivering almost 80% of its room-temperature capacity at 4 C, compared to less than 5% for the NCM cathode. The batteries were modeled using a second-order equivalent circuit model, and variations in model parameters were analyzed from the perspectives of internal resistance and electrode kinetics. The second-order equivalent circuit model revealed that the NCM-based cells had lower ohmic resistance and faster electrode kinetics. By correlating battery performance with cathode materials, this study evaluates the suitability of LTO batteries with different cathodes for various application scenarios, providing valuable insights for battery application and management.



Source link

Hao Li www.mdpi.com