Biomedicines, Vol. 13, Pages 2934: Antibody-Mediated In Vitro Activation and Expansion of Blood Donor-Derived Natural Killer Cells with Transient Anti-Tumor Efficacy
Biomedicines doi: 10.3390/biomedicines13122934
Authors:
Shengxue Luo
Feifeng Zeng
Qitao Deng
Yalin Luo
Dawei Chen
Hui Ren
Wenjie Xia
Xin Ye
Shuxin Huang
Tingting Li
Yongshui Fu
Xia Rong
Huaqin Liang
Background: Natural killer (NK) cells are key effectors of innate immunity with broad-spectrum anti-tumor activity. However, peripheral blood-derived NK (PBNK) cells are typically quiescent, which limits their therapeutic utility. This study aimed to develop an efficient strategy for the in vitro activation and expansion of PBNK cells and then evaluate their potential anti-tumor efficacy in vitro and vivo. Methods: NK cells were isolated from healthy blood donors’ peripheral blood and stimulated with anti-CD16 and anti-CD137 antibodies in the presence of interleukin-2 (IL-2) and interleukin-15 (IL-15) under serum-free conditions, generating super NK (SNK) cells. The expression levels of activating and inhibitory receptors on the expanded SNK cells were assessed by flow cytometry. Cytotoxicity against tumor cells was assessed at various effector-to-target (E:T) ratios in vitro. In vivo, anti-tumor efficacy was evaluated in K562-engrafted NSG mice. RNA sequencing was performed to identify differentially expressed genes (DEGs) between SNK and PBNK cells. Results: Stimulation with anti-CD16 and anti-CD137 antibodies resulted in significant expansion of donor-derived NK cells, with over 861.9 ± 48.84-fold expansion (n = 5) within 15 days of culture. SNK cells exhibited significantly elevated expression of activating receptors, including NKG2D. Functionally, SNK cells demonstrated superior cytotoxicity compared with PBNK cells across all tested E:T ratios in vitro and higher expressions of the effector molecules interferon-gamma (IFN-γ) and granzyme B (Gzm B). In vivo, adoptive SNK cell transfer resulted in significant tumor suppression and prolonged survival in a dose-dependent manner. Transcriptomic analysis revealed significant enrichment of DEGs associated with cytokine and chemokine signaling, immune activation, and cytotoxic effector function compared with the PBNK cells. Conclusions: Anti-CD16/CD137 antibody stimulation, in combination with IL-2 and IL-15, facilitates robust activation and rapid expansion of functionally enhanced NK cells from peripheral blood. The resulting SNK cells demonstrated enhanced anti-tumor efficacy both in vitro and in vivo and may be used as allogeneic NK cell-based immunotherapy in future cancer treatment strategies.
Source link
Shengxue Luo www.mdpi.com
