Biomimetics, Vol. 10, Pages 328: Effects of Wing Kinematics on Aerodynamics Performance for a Pigeon-Inspired Flapping Wing
Biomimetics doi: 10.3390/biomimetics10050328
Authors:
Tao Wu
Kai Wang
Qiang Jia
Jie Ding
The wing kinematics of birds plays a significant role in their excellent unsteady aerodynamic performance. However, most studies investigate the influence of different kinematic parameters of flapping wings on their aerodynamic performance based on simple harmonic motions, which neglect the aerodynamic effects of the real flapping motion. The purpose of this article was to study the effects of wing kinematics on aerodynamic performance for a pigeon-inspired flapping wing. In this article, the dynamic geometric shape of a flapping wing was reconstructed based on data of the pigeon wing profile. The 3D wingbeat kinematics of a flying pigeon was extracted from the motion trajectories of the wingtip and the wrist during cruise flight. Then, we used a hybrid RANS/LES method to study the effects of wing kinematics on the aerodynamic performance and flow patterns of the pigeon-inspired flapping wing. First, we investigated the effects of dynamic spanwise twisting on the lift and thrust performance of the flapping wing. Numerical results show that the twisting motion weakens the leading-edge vortex (LEV) on the upper surface of the wing during the downstroke by reducing the effective angle of attack, thereby significantly reducing the time-averaged lift and power consumption. Then, we further studied the effects of the 3D sweeping motion on the aerodynamic performance of the flapping wing. Backward sweeping reduces the wing area and weakens the LEV on the lower surface of the wing, which increases the lift and reduces the aerodynamic power consumption significantly during the upstroke, leading to a high lift efficiency. These conclusions are significant for improving the aerodynamic performance of bionic flapping-wing micro air vehicles.
Source link
Tao Wu www.mdpi.com