Biomimetics, Vol. 10, Pages 419: Biomechanical Modeling, Muscle Synergy-Based Rehabilitation Assessment, and Real-Time Fatigue Monitoring for Piano-Integrated Upper Limb Therapy
Biomimetics doi: 10.3390/biomimetics10070419
Authors:
Xin Zhao
Ying Zhang
Yi Zhang
Shuo Jiang
Peng Zhang
Jinxu Yu
Shuai Yuan
Piano-based occupational therapy has emerged as an engaging and effective rehabilitation strategy for improving upper limb motor functions. However, a lack of comprehensive biomechanical modeling, objective rehabilitation assessment, and real-time fatigue monitoring has limited its clinical optimization. This study developed a comprehensive “key–finger–exoskeleton” biomechanical model based on Hill-type muscle dynamics and rigid-body kinematics. A three-dimensional muscle synergy analysis method using non-negative tensor factorization (NTF) was proposed to quantitatively assess rehabilitation effectiveness. Furthermore, a real-time Comprehensive Muscle Fatigue Index (CMFI) based on multi-muscle coordination was designed for fatigue monitoring during therapy. Experimental validations demonstrated that the biomechanical model accurately predicted interaction forces during piano-playing tasks. After three weeks of therapy, patients exhibited increased synergy modes and significantly improved similarities with healthy subjects across spatial, temporal, and frequency domains, particularly in the temporal domain. The CMFI showed strong correlation (r > 0.83, p < 0.001) with subjective fatigue ratings, confirming its effectiveness in real-time fatigue assessment and training adjustment. The integration of biomechanical modeling, synergy-based rehabilitation evaluation, and real-time fatigue monitoring offers an objective, quantitative framework for optimizing piano-based rehabilitation. These findings provide important foundations for developing intelligent, adaptive rehabilitation systems.
Source link
Xin Zhao www.mdpi.com