Biomimetics, Vol. 10, Pages 587: Graph-Driven Micro-Expression Rendering with Emotionally Diverse Expressions for Lifelike Digital Humans


Biomimetics, Vol. 10, Pages 587: Graph-Driven Micro-Expression Rendering with Emotionally Diverse Expressions for Lifelike Digital Humans

Biomimetics doi: 10.3390/biomimetics10090587

Authors:
Lei Fang
Fan Yang
Yichen Lin
Jing Zhang
Mincheol Whang

Micro-expressions, characterized by brief and subtle facial muscle movements, are essential for conveying nuanced emotions in digital humans, yet existing rendering techniques often produce rigid or emotionally monotonous animations due to the inadequate modeling of temporal dynamics and action unit interdependencies. This paper proposes a graph-driven framework for micro-expression rendering that generates emotionally diverse and lifelike expressions. We employ a 3D-ResNet-18 backbone network to perform joint spatio-temporal feature extraction from facial video sequences, enhancing sensitivity to transient motion cues. Action units (AUs) are modeled as nodes in a symmetric graph, with edge weights derived from empirical co-occurrence probabilities and processed via a graph convolutional network to capture structural dependencies and symmetric interactions. This symmetry is justified by the inherent bilateral nature of human facial anatomy, where AU relationships are based on co-occurrence and facial anatomy analysis (as per the FACS), which are typically undirected and symmetric. Human faces are symmetric, and such relationships align with the design of classic spectral GCNs for undirected graphs, assuming that adjacency matrices are symmetric to model non-directional co-occurrences effectively. Predicted AU activations and timestamps are interpolated into continuous motion curves using B-spline functions and mapped to skeletal controls within a real-time animation pipeline (Unreal Engine). Experiments on the CASME II dataset demonstrate superior performance, achieving an F1-score of 77.93% and an accuracy of 84.80% (k-fold cross-validation, k = 5), outperforming baselines in temporal segmentation. Subjective evaluations confirm that the rendered digital human exhibits improvements in perceptual clarity, naturalness, and realism. This approach bridges micro-expression recognition and high-fidelity facial animation, enabling more expressive virtual interactions through curve extraction from AU values and timestamps.



Source link

Lei Fang www.mdpi.com