Biomimetics, Vol. 10, Pages 791: Recent Advances and Retrospective Review in Bioinspired Structures for Fog Water Collection
Biomimetics doi: 10.3390/biomimetics10120791
Authors:
Shizhang Dong
Guangze Li
Shaobo Jin
Hong Hu
Guoyong Ye
Fog water collection, as a sustainable approach to alleviating water scarcity, has attracted considerable attention due to its low energy consumption and environmental friendliness. Various organisms in nature have evolved unique biological structures that efficiently capture and direct fog water. The fog water collection structures (FWCSs) and physical mechanisms of these organisms provide valuable inspiration for innovations in fog water collection technologies. This review systematically summarizes biomimetic structures designed for fog water collection, with a focus on representative natural examples such as the Namib desert beetle, cactus spines, spider silk, and Nepenthes mirabilis, highlighting how they achieve efficient fog water capture, coalescence, and transport through special surface textures, wettability regulation, and structural design. The underlying physical mechanisms are discussed in depth, including droplet behavior on micro/nanostructured surfaces, surface energy gradients, and Laplace pressure gradients in directional droplet transport. On this basis, the current challenges in bioinspired FWCSs design are outlined, and future perspectives are proposed. Future research may focus on the multiscale structural optimization of bioinspired FWCSs, the development of dynamically tunable designs, and the use of efficient and sustainable materials to further enhance fog water collection efficiency and ensure the long-term stability of FWCSs. Ultimately, by integrating modern manufacturing technologies and stimuli-responsive materials, bioinspired FWCSs hold great potential for applications in extreme environments, agricultural irrigation, and energy-efficient architecture, offering innovative solutions to the global water crisis.
Source link
Shizhang Dong www.mdpi.com
