Biomimetics, Vol. 11, Pages 14: Biomimetic Approach to Designing Trust-Based Robot-to-Human Object Handover in a Collaborative Assembly Task
Biomimetics doi: 10.3390/biomimetics11010014
Authors:
S. M. Mizanoor Rahman
We presented a biomimetic approach to designing robot-to-human handover of objects in a collaborative assembly task. We developed a human–robot hybrid cell where a human and a robot collaborated with each other to perform the assembly operations of a product in a flexible manufacturing setup. Firstly, we investigated human psychology and biomechanics (kinetics and kinematics) for human-to-robot handover of an object in the human–robot collaborative set-up in three separate experimental conditions: (i) human possessed high trust in the robot, (ii) human possessed moderate trust in the robot, and (iii) human possessed low trust in the robot. The results showed that human psychology was significantly impacted by human trust in the robot, which also impacted the biomechanics of human-to-robot handover, i.e., human hand movement slowed down, the angle between human hand and robot arm increased (formed a braced handover configuration), and human grip forces increased if human trust in the robot decreased, and vice versa. Secondly, being inspired by those empirical results related to human psychology and biomechanics, we proposed a novel robot-to-human object handover mechanism (strategy). According to the novel handover mechanism, the robot varied its handover configurations and motions through kinematic redundancy with the aim of reducing potential impulse forces on the human body through the object during the handover when robot trust in the human was low. We implemented the proposed robot-to-human handover mechanism in the human–robot collaborative assembly task in the hybrid cell. The experimental evaluation results showed significant improvements in human–robot interaction (HRI) in terms of transparency, naturalness, engagement, cooperation, cognitive workload, and human trust in the robot, and in overall performance in terms of handover safety, handover success rate, and assembly efficiency. The results can help design and develop human–robot handover mechanisms for human–robot collaborative tasks in various applications such as industrial manufacturing and manipulation, medical surgery, warehouse, transport, logistics, construction, machine shops, goods delivery, etc.
Source link
S. M. Mizanoor Rahman www.mdpi.com
