Biosensors, Vol. 15, Pages 299: Molecular Association Assay Systems for Imaging Protein–Protein Interactions in Mammalian Cells
Biosensors doi: 10.3390/bios15050299
Authors:
Sung-Bae Kim
Tadaomi Furuta
Suresh Thangudu
Arutselvan Natarajan
Ramasamy Paulmurugan
Molecular imaging probes play a pivotal role in assaying molecular events in various physiological systems. In this study, we demonstrate a new genre of bioluminescent probes for imaging protein–protein interactions (PPIs) in mammalian cells, named the molecular association assay (MAA) probe. The MAA probe is designed to be as simple as a full-length marine luciferase fused to a protein of interest with a flexible linker. This simple fusion protein alone surprisingly works by recognizing a specific ligand, interacting with a counterpart protein of the PPI, and developing bioluminescence (BL) in mammalian cells. We made use of an artificial intelligence (AI) tool to simulate the binding modes and working mechanisms. Our AlphaFold-based analysis on the binding mode suggests that the hinge region of the MAA probe is flexible before ligand binding but becomes stiff after ligand binding and protein association. The sensorial properties of representative MAA probes, FRB-ALuc23 and FRB-R86SG, are characterized with respect to the quantitative feature, BL spectrum, and in vivo tumor imaging using xenografted mice. Our AI-based simulation of the working mechanisms reveals that the association of MAA probes with the other proteins works in a way to facilitate the substrate’s access to the active sites of the luciferase (ALuc23 or R86SG). We prove that the concept of MAA is generally applicable to other examples, such as the ALuc16- or R86SG-fused estrogen receptor ligand-binding domain (ER LBD). Considering the versatility of this conceptionally unique and distinctive molecular imaging probe compared to conventional ones, we are expecting the widespread application of these probes as a new imaging repertoire to determine PPIs in living organisms.
Source link
Sung-Bae Kim www.mdpi.com