Biosensors, Vol. 15, Pages 333: Probing the Influence of Specular Reflection and Overexposure on Backscattering Mueller Matrix Polarimetry for Tissue Imaging and Sensing
Biosensors doi: 10.3390/bios15050333
Authors:
Wei Jiao
Nan Zeng
Rui Hao
Hui Ma
Chao He
Honghui He
Mueller matrix polarimetry has great potential for tissue detection and clinical diagnosis due to its ability to provide rich microstructural information accurately. However, in practical in vivo tissue imaging based on backscattering Mueller matrix polarimetry, specular reflection is often inevitable, leading to overexposed regions and the following inaccurate polarization information acquisition of tissues. In this study, we probe the influence of specular reflection and overexposure on backscattering Mueller matrix polarimetry for tissue imaging and sensing. We investigate in detail the differentiation of polarization behaviors between the specular reflection and non-specular reflection tissue regions using a 3 × 3 backscattering Mueller matrix measurement. Then, we obtain the vertical projection profiles to further quantify the Mueller matrix elements of porcine liver tissue in different specular reflection regions. Finally, we calculate the polarization feature parameters derived from a 3 × 3 Mueller matrix and analyze their behavior in overexposed regions. Based on the quantitative analysis and comparisons, we obtain a group of polarization feature parameters with strong immunity to the specular reflection process. This study offers a strategy for selecting the polarization parameters during in vivo polarimetric imaging applications, provides valuable references for further eliminating the characterization errors induced by specular reflection, and may contribute to the advancement of quantitative tissue polarimetric imaging and sensing.
Source link
Wei Jiao www.mdpi.com