Biosensors, Vol. 16, Pages 120: Automated Intracellular Immunofluorescence Staining Enabled by Magnetic 3D Mixing in a Modular Microfluidic Platform
Biosensors doi: 10.3390/bios16020120
Authors:
Zhengyi Zhang
Mengyu Wang
Runtao Zhong
Yingbo Zhao
Yeqing Sun
Traditional sample preparation for flow cytometry is often labor-intensive, operator-dependent, and reagent-consuming, limiting its suitability for automated and point-of-care biosensing applications. To address these challenges, this study presents a functional modular microfluidic system integrating immunomagnetic beads (IMBs) to enable automated intracellular immunofluorescence (IF) staining. The modular microfluidic platform is enabled by a dynamically actuated three-dimensional magnetic field that couples with IMBs within a microfluidic reaction chamber, requiring only one-dimensional magnet translation to induce effective three-dimensional bead motion. This magnetic–chip cooperative strategy significantly enhances microscale mixing and cell capture, facilitating automated immunostaining of the radiation biomarker in CD4+ cells. Finite element simulations were employed to guide magnetic field design by analyzing magnetic force distributions and identifying key parameters, including magnet material, size, spatial arrangement, and chip–magnet distance. Experimental validation using CD4+ cell capture confirmed the effectiveness of the magnetic mixing strategy, revealing ∇B·B as the critical design parameter. An N52 NdFeB magnet (6 mm diameter, 10 mm height) positioned within 2.2 mm of the chamber centerline stably retained IMBs at flow rates below 200 µL/min. Under optimized conditions (magnet translation speed of 8 mm/s and a 15 min mixing duration), a maximum cell capture efficiency of 86% was achieved. Subsequent automated γH2AX IF staining demonstrated a strong linear dose–response relationship (R2 > 0.9) in mean fluorescence intensity. This study demonstrates a robust and scalable strategy for automating complex IF staining workflows, highlighting the potential of magnetic-field-assisted microfluidic platforms for biosensing applications requiring reliable intracellular biomarker detection.
Source link
Zhengyi Zhang www.mdpi.com

