Brain Sciences, Vol. 15, Pages 333: Brain Activation During Motor Preparation and Execution in Patients with Mild Cognitive Impairment: An fNIRS Study


Brain Sciences, Vol. 15, Pages 333: Brain Activation During Motor Preparation and Execution in Patients with Mild Cognitive Impairment: An fNIRS Study

Brain Sciences doi: 10.3390/brainsci15040333

Authors:
Hanfei Li
Chenyu Fan
Ke Chen
Hongyu Xie
Guohui Yang
Haozheng Li
Xiangtong Ji
Yi Wu
Meng Li

Objectives: This study aimed to investigate how motor preparation impacted brain activation in individuals with differing cognitive statuses. Methods: We investigated the cortical activation pattern of 57 individuals with mild cognitive impairment (MCI) and 67 healthy controls (HCs) using functional near-infrared spectroscopy (fNIRS) during prepared walking (PW) and single walking (SW) tasks. The study focused on assessing brain activity in four regions of interest (ROIs): the prefrontal cortex (PFC), primary motor cortex, secondary motor cortex, and parietal lobe. Additionally, we examined the behavioral performance—gait speed—during the tasks, analyzed variations in cortical activation intensity, and conducted correlation analyses between Montreal Cognitive Assessment (MoCA) scores, gait speed, and oxygenation levels. Results: There was no significant difference in gait speed between patients with MCI and HCs. The MCI group exhibited lower activation in the primary motor cortex, secondary motor cortex, and parietal regions compared to HCs during the motor execution stage of PW (q < 0.05, FDR-corrected). Additionally, activation in the primary (r = 0.23, p = 0.02) and secondary motor cortices (r = 0.19, p = 0.04) during the motor execution stage of PW correlated significantly with MoCA scores. Furthermore, brain activity in the PFC (r = 0.22, p = 0.02), primary motor cortex (r = 0.22, p = 0.01), secondary motor cortex (r = 0.20, p = 0.02), and parietal lobe (r = 0.19, p = 0.03) during the motor preparation stage of gait was positively correlated with gait speed. Conclusions: Our results revealed that preparing for motor tasks modulated the neural activation patterns of patients with MCI and HCs without affecting their behavioral performance.



Source link

Hanfei Li www.mdpi.com