Buildings, Vol. 15, Pages 1387: Soil Improvement Using Plastic Waste–Cement Mixture to Control Swelling and Compressibility of Clay Soils


Buildings, Vol. 15, Pages 1387: Soil Improvement Using Plastic Waste–Cement Mixture to Control Swelling and Compressibility of Clay Soils

Buildings doi: 10.3390/buildings15081387

Authors:
Mousa Attom
Sameer Al-Asheh
Mohammad Yamin
Ramesh Vandanapu
Naser Al-Lozi
Ahmed Khalil
Ahmed Eltayeb

Clay soils are known to have a high swelling pressure with an increase in water content. This behavior is considered a serious hazard to structures built upon them. Various mechanical and chemical treatments have historically been used to stabilize the swelling behavior of clay soils. This work investigates the potential use of shredded plastic waste to reduce the swelling pressure and compressibility of clay soils. Two types of highly plastic clay (CH) soils were selected. Three different dimensions of plastic waste pieces were used, namely lengths of 0.5 cm, 1.0 cm, and 1.5 cm, with a width of 1 mm. A blend of plastic–cement waste with a ratio of 1:5 by weight was prepared. Different fractions of the plastic–cement waste blend with a 2 wt.% increment were added to the clay soil, which was then remolded in a consolidometer ring at 95% relative compaction and 3.0% below the optimum. The zero swell test, as per ASTM D4546, was conducted on the remolded soil samples after three curing periods: 1, 2, and 7 days. This method ensures the accurate evaluation of swell potential and stabilization efficiency over time. The experimental results showed that the addition of 6.0–8.0% of the blend significantly reduced the swelling pressure, demonstrating the mixture’s effectiveness in soil stabilization. It also reduced the swell potential of the expansive clay soil and had a substantial effect on the reduction in its compressibility, especially with a higher aspect ratio. The compression index decreased, while the maximum past pressure increased with a higher plastic–cement ratio. The 7-day curing time is the optimum time to stabilize expansive clay soils with the plastic–cement waste mixture. This study provides strong evidence that plastic waste can enhance soil mechanical properties, making it a viable geotechnical solution.



Source link

Mousa Attom www.mdpi.com