Buildings, Vol. 15, Pages 3666: Low-Carbon Climate-Resilient Retrofit Pilot: Construction Report


Buildings, Vol. 15, Pages 3666: Low-Carbon Climate-Resilient Retrofit Pilot: Construction Report

Buildings doi: 10.3390/buildings15203666

Authors:
Hamish Pope
Mark Carver
Jeff Armstrong

Deep retrofits are one of the few pathways to decarbonize the existing building stock while simultaneously improving climate resilience. These retrofits improve insulation, airtightness, and mechanical equipment efficiency. NRCan’s Prefabricated Exterior Energy Retrofit (PEER) project developed prefabricated building envelope retrofit solutions to enable net-zero performance. The PEER process was demonstrated on two different pilot projects completed between 2017 and 2023. In 2024, in partnership with industry partners, NRCan developed new low-carbon retrofit panel designs and completed a pilot project to evaluate their performance and better understand resiliency and occupant comfort post-retrofit. The Low-Carbon Climate-Resilient (LCCR) Living Lab pilot retrofit was completed in 2024 in Ottawa, Canada, using low-carbon PEER panels. This paper outlines the design and construction for the pilot, including panel designs, the retrofitting process, and post-retrofit building and envelope commissioning. The retrofitting process included the design and installation of new prefabricated exterior retrofitted panels for the walls and the roof. These panels were insulated with cellulose, wood fibre, hemp, and chopped straw. During construction, blower door testing and infrared imaging were conducted to identify air leakage paths and thermal bridges in the enclosure. The retrofit envelope thermal resistance is RSI 7.0 walls, RSI 10.5 roof, and an RSI 3.5 floor with 0.80 W/m2·K U-factor high-gain windows. The measured normalized leakage area @10Pa was 0.074 cm2/m2. The net carbon stored during retrofitting was over 1480 kg CO2. Monitoring equipment was placed within the LCCR to enable the validation of hygrothermal models for heat, air, and moisture transport, and energy, comfort, and climate resilience models.



Source link

Hamish Pope www.mdpi.com