Buildings, Vol. 16, Pages 243: Effectiveness of Passive CFRP and Active Fe-SMA Confinement in Enhancing Drift Capacity and Seismic Performance of RC Columns Under Extreme Drift Levels


Buildings, Vol. 16, Pages 243: Effectiveness of Passive CFRP and Active Fe-SMA Confinement in Enhancing Drift Capacity and Seismic Performance of RC Columns Under Extreme Drift Levels

Buildings doi: 10.3390/buildings16010243

Authors:
Adel Al Ekkawi
Raafat El-Hacha

This study presents an experimental investigation into the seismic performance of seismically deficient reinforced concrete (RC) bridge columns retrofitted with passive and active confinement systems. Four single-cantilever RC columns, representing 1/3-scale bridge piers, were constructed with poor transverse reinforcement detailing to simulate seismic deficiency. One column was left un-strengthened for baseline comparison, while the remaining three were retrofitted using: (1) a CFRP jacket, (2) welded Fe-SMA plates, and (3) bolted Fe-SMA plates. All columns were subjected to quasi-static lateral cyclic push-only loading reaching extreme drift levels exceeding 16% and high loading rates up to 6 mm/s. The study specifically explores the confinement effectiveness of CFRP and thermally activated Fe-SMA plates, comparing their contributions to lateral strength, ductility, energy dissipation, failure mode, and damage suppression. The results show that while the as-built column failed at 3.65% drift due to brittle flexural-shear failure, all retrofitted columns demonstrated significantly enhanced ductility, drift capacity, and post-peak behaviour. The CFRP and Fe-SMA jackets effectively delayed damage initiation, minimized core degradation, and improved energy dissipation. The bolted Fe-SMA system exhibited the highest and full restoration of lateral strength, while the welded system achieved the greatest increase in cumulative energy dissipation of around 40%. This research highlights the practical advantages and seismic effectiveness of Fe-SMA and CFRP confinement systems under extreme drift levels. However, future work should explore full-scale column applications, refine anchorage techniques for improved composite interaction, and investigate long-term durability under cyclic environmental conditions.



Source link

Adel Al Ekkawi www.mdpi.com