Buildings, Vol. 16, Pages 312: Seismic Responses in Shaking Table Tests of Spatial Crossing Tunnels
Buildings doi: 10.3390/buildings16020312
Authors:
Zhiqiang Lv
Jiacheng Li
Jiaxu Jin
To study the complex dynamic response characteristics of spatial crossing tunnels under seismic loads, shaking table model tests were carried out for typical spatial parallel, orthogonal, and oblique crossing tunnels. The propagation and energy distribution characteristics of seismic waves were quantitatively analyzed according to the fundamental frequency, acceleration, and strain response of the system. The results show the following: the addition of a tunnel structure significantly reduces the natural frequency of the system. In spatial crossing tunnel engineering, the axial acceleration responses of the arch top and arch bottom of the tunnel both exhibit the characteristic of a linear distribution, presenting a ‘linear’ shape. For spatial parallel-type and spatial orthogonal-type tunnels, the peak acceleration at the same measurement point of the overcrossing tunnel under the same working condition is generally greater than that of the undercrossing tunnel. However, for the spatial oblique intersection-type structure, the result is just the opposite, that is, the peak acceleration of the overcrossing tunnel is generally less than that of the undercrossing tunnel. For spatial crossing tunnels, unlike the amplification effect of acceleration in a single tunnel, due to the reflection and refraction of seismic waves between the two tunnels, a ‘superposition effect’ of acceleration is generated in space, resulting in an abnormal increase in the acceleration response within the crossing section, which is prone to becoming a weak link in the seismic resistance of the tunnel structure. The strain response of both spatially parallel and orthogonal overcrossing tunnels is greater at the central section than that of undercrossing tunnels and less on both sides. The strain response of the spatial oblique intersection-type overcrossing tunnel is generally greater than that of the undercrossing tunnel.
Source link
Zhiqiang Lv www.mdpi.com
