Buildings, Vol. 16, Pages 396: Modular Chain-of-Thought (CoT) for LLM-Based Conceptual Construction Cost Estimation


Buildings, Vol. 16, Pages 396: Modular Chain-of-Thought (CoT) for LLM-Based Conceptual Construction Cost Estimation

Buildings doi: 10.3390/buildings16020396

Authors:
Prashnna Ghimire
Kyungki Kim
Terry Stentz
Tirthankar Roy

The traditional cost estimation process in construction involves extracting information from diverse data sources and relying on human intuition and judgment, making it time-intensive and error-prone. While recent advancements in large language models offer opportunities to automate these processes, their effectiveness in cost estimation tasks remains underexplored. Prior studies have investigated LLM applications in construction, but there is a lack of studies that have systematically evaluated their performance in cost estimation or proposed a framework for systematic evaluations of their performance in cost estimation and ways to enhance their accuracy and reliability through prompt engineering. This study evaluates the performance of pre-trained LLMs (GPT-4o, LLaMA 3.2, Gemini 2.0, and Claude 3.5 Sonnet) for conceptual cost estimation, comparing zero-shot prompting with a modular chain-of-thought framework. The results indicate that zero-shot prompting produced incomplete responses with an average confidence score of 1.91 (64%), whereas the CoT framework improved accuracy to 2.52 (84%) and achieved significant gains across BLEU, ROUGE-L, METEOR, content overlap, and semantic similarity metrics. The proposed modular CoT framework enhances structured reasoning, contextual alignment, and reliability in estimation workflows. This study contributes by developing a conceptual cost estimation framework for LLMs, benchmarking baseline model performance, and demonstrating how structured prompting improves estimation accuracy. This offers a scalable foundation for integrating AI into construction cost estimation workflows.



Source link

Prashnna Ghimire www.mdpi.com