C, Vol. 11, Pages 65: Graphene Oxide Promoted Light Activation of Peroxymonosulfate for Highly Efficient Triphenyl Phosphate Degradation
Authors:
Yilong Li
Yi Xie
Xuqian Wang
Yabo Wang
The treatment of organic phosphate ester (OPE) pollutants in water is a challenging but highly necessary task. In this study, an advanced oxidation process through light activation of peroxymonosulfate (PMS) involving graphene oxide (GO) as a promoter was developed to degrade OPE in water, taking triphenyl phosphate (TPhP) as an example. The developed “Light+PMS+GO” system demonstrated good convenience, high TPhP degradation efficiency, tolerance in a near-neutral pH, satisfactory re-usability, and a low toxicity risk of degradation products. Under the investigated reaction conditions, viz., the full spectrum of a 300 W Xe lamp, PMS of 200 mg L−1, GO of 4 mg L−1, and TPhP of 10 μmol L−1, the “Light+PMS+GO” system achieved nearly 100% TPhP degradation efficiency during a 15 min reaction duration with a 5.81-fold enhancement in the reaction rate constant, compared with the control group without GO. Through quenching experiments and electron paramagnetic resonance studies, singlet oxygen was identified as the main reactive species for TPhP degradation. Further studies implied that GO could accumulate both oxidants and pollutants on the surface, providing additional reaction sites for PMS activation and accelerating electron transfer, which all contributed to the enhancement of TPhP degradation. Finally, the TPhP degradation pathway was proposed and a preliminary toxicity evaluation of degradation intermediates was conducted. The convenience, high removal efficiency, and good re-usability indicates that the developed “Light+PMS+GO” reaction system has great potential for future applications.
Source link
Yilong Li www.mdpi.com