Cancers, Vol. 17, Pages 1730: Immune Modulation During Treatment with Enzalutamide Alone or with Radium-223 in Patients with Castration Resistant Prostate Cancer
Cancers doi: 10.3390/cancers17101730
Authors:
Peter D. Zang
Diane M. Da Silva
Zhang-Xu Liu
Shivani Kandukuri
Denice Tsao-Wei
Anishka D’Souza
W. Martin Kast
Sumanta K. Pal
Cheryl Kefauver
Maribel Juanqueira
Lixin Yang
David I. Quinn
Tanya B. Dorff
Introduction: Prostate cancer has been generally resistant to immunotherapy approaches. Radiation can be immunostimulatory, but the extent to which standard prostate cancer treatments induce immune activation has not been well described. The bone-targeted radiopharmaceutical Radium223 (Ra223) has been proposed to enrich immune function, but clinical studies have not fully delineated whether this is true, or by what mechanisms. Enzalutamide has been shown to increase PD-L1 expression on dendritic cells, which could impact immune activation, though the extent to which this is associated with other evidence of immune activation remains uncertain, and combination strategies remain of interest. We performed a randomized phase II trial to evaluate whether Radium223 (Ra223) added to enzalutamide would induce greater immune activation and clinical responses compared to enzalutamide alone in men with metastatic castration-resistant prostate cancer (mCRPC). Methods: Eligible patients were randomized 2:1 to Arm A (enzalutamide 160 mg PO daily + Ra223 55 kBq/kg IV q4 weeks × 6 doses) or Arm B (enzalutamide 160 mg PO daily). Blood was collected at treatment start and during treatment to measure soluble immune checkpoint biomarkers (BTLA, TIM3, HVEM, GITR, LAG3, PD-1, CTLA-4, PD-L1, PD-L2, ICOS). Immunophenotyping by mass cytometry time of flight (CyTOF) was performed to measure peripheral blood mononuclear cell populations before and after treatment. CyTOF was used to determine changes in circulating immune cell population subsets before and after treatment. Biopsies were performed of an active bone metastatic lesion prior to study treatment and after at least 3 months. IHC was subsequently performed to examine changes in immune cell population subsets before and after treatment, and changes in pSTAT3 levels. Results: In total, 30 patients were enrolled, with median age 68. The median duration of follow up was 36 months. PSA responses, PFS, and OS were not significantly different between the two arms; however, the study was not powered for clinical endpoints. Peripheral blood and bone biopsy specimens were analyzed for immune correlatives. Soluble receptor concentrations showed significantly increased expression of PDL-2 in the combination arm, but this was not seen on CyTOF. Otherwise, there were no significant differences in markers of immune activation/exhaustion or immune cell population subsets in the combination arm and enzalutamide monotherapy arm. IHC also did not show a significant difference in immune cell population subsets in bone biopsy specimens before and after treatment in both arms. However, treatment with the combination arm did show significantly increased levels of pSTAT3 (p = 0.04), which was not seen in the enzalutamide monotherapy arm. Conclusions: Our study showed an overall lack of evidence for immune activation or cytokine induction with the combination, which does not make a strong case for combinatorial immunotherapy approaches. However, the combination did induce higher levels of pSTAT3, which has been implicated in radio-resistance. Therefore, the addition of a STAT3 inhibitor to the combination may be of interest to improve efficacy.
Source link
Peter D. Zang www.mdpi.com