Catalysts, Vol. 15, Pages 788: Metal-Free Cellulose Carbon Nanofiber Supported Graphitic Carbon Nitride for High-Efficient BPA Degradation by Photcatalytic Peroxymonosulfate Activation
Catalysts doi: 10.3390/catal15080788
Authors:
Jingjing Liu
Guilong Gao
Lu Gan
Herein, carbon nanofiber (CNF) was prepared by pyrolyzing electrospun cellulose nanofiber, which was further used to incorporate with graphitic carbon nitride (g-C3N4) to prepare metal-free photocatalyst (CNF/g-C3N4). CNF/g-C3N4 was then used to degrade bisphenol A (BPA) under visible light with the assistance of peroxymonosulfate (PMS). It was illustrated from the results that CNF with conjugated aromatic structure could significantly enhance the light absorption range and capability. At the existence of PMS, 0.5 g/L of CNF/g-C3N4 could efficiently degrade 0.05 mM of BPA within 45 min with a high total organic carbon removal rate of >70% under visible light. It was found that the reaction system could generate various reactive oxygen species (ROSs) including hydroxyl radical, superoxide radical and singlet oxygen for BPA degradation. Due to the existence of these species, the reaction system exhibited high performance adaptability towards abundant water matrices and high stability under consecutive runs. This work prospects a new strategy to develop a high-performance advanced oxidation system for quick organic pollutant degradation and mineralization.
Source link
Jingjing Liu www.mdpi.com