Climate, Vol. 14, Pages 2: Intensification of SUHI During Extreme Heat Events: An Eight-Year Summer Analysis for Lecce (2018–2025)


Climate, Vol. 14, Pages 2: Intensification of SUHI During Extreme Heat Events: An Eight-Year Summer Analysis for Lecce (2018–2025)

Climate doi: 10.3390/cli14010002

Authors:
Antonio Esposito
Riccardo Buccolieri
Jose Luis Santiago
Gianluca Pappaccogli

The effects of extreme heat events on Surface Urban Heat Island Intensity (SUHII) were investigated in Lecce (southern Italy) during the summer months (June–August) from 2018 to 2025. The analysis began with the identification of heatwave frequency, duration, and intensity using the Warm Spell Duration Index (WSDI), based on a homogenized long-term temperature record, which indicated a progressive increase in persistent extreme events in recent years. High-resolution ECOSTRESS land surface temperature (LST) data were then processed and combined with CORINE Land Cover (CLC) information to examine the thermal response of different urban fabrics, compact residential areas, continuous/discontinuous urban fabric, and industrial–commercial zones. SUHII was derived from each ECOSTRESS acquisition and evaluated across multiple diurnal intervals to assess temporal variability under both normal and WSDI conditions. The results show a consistent diurnal asymmetry: daytime SUHII becomes more negative during WSDI periods, reflecting enhanced rural warming under dry and highly irradiated conditions, despite overall higher absolute LST during heatwaves, whereas nighttime SUHII intensifies, particularly in dense urban areas where higher thermal inertia promotes persistent heat retention. Statistical analyses confirm significant differences between normal and extreme conditions across all classes and time intervals. These findings demonstrate that extreme heat events alter the urban–rural thermal contrast by amplifying nighttime heat accumulation and reinforcing daytime negative SUHII values. The integration of WSDI-derived heatwave characterization with multi-year ECOSTRESS observations highlights the increasing thermal vulnerability of compact urban environments under intensifying summer extremes.



Source link

Antonio Esposito www.mdpi.com