Coatings, Vol. 15, Pages 1258: Research on the Mechanical Properties and Microstructure of Fly Ash, Slag, and Metakaolin Geopolymers
Coatings doi: 10.3390/coatings15111258
Authors:
Zhiqiang Xing
Zekang Li
Peng Wang
Zeming Song
Li Wu
Geopolymer materials possess several outstanding advantages, including the wide availability of raw materials, an energy-saving and environmentally friendly production process, and excellent engineering technical performance. They are regarded as a new type of green building material that can achieve high-value-added resource utilization of industrial solid waste. They are one of the current research hotspots in the field of materials. Fly ash and slag, the most common industrial wastes in China, have been discharged in large quantities, significantly impacting the country’s ecological environment. Based on this, this paper primarily investigates the mechanical properties and strength formation mechanism of geopolymer paste to develop geopolymer materials with enhanced mechanical properties. This research uses metakaolin as the silicate raw material and uses sodium silicate mixed with NaOH as the alkali activator to prepare geopolymer paste. By adding fly ash and slag, the mechanical properties of the geopolymer paste are improved. The effects of the alkali activator modulus, Na2O equivalent, and content of fly ash and slag on the setting time and strength of geopolymer paste are studied. XRD, FTIR, and SEM are employed to characterize the phase, molecular structure, and microscopic morphology of geopolymer paste, as well as to analyze the microstructure and reaction mechanism of these materials. The results show that the setting time of the geopolymer increases with the increase in modulus and shortens with the increase in Na2O equivalent. Fly ash and slag, respectively, act as retarders and early strength promoters. The ratio of n(SiO2)/n(A12O3) (that is, the modulus of the alkali activator) of the geopolymer is an important factor affecting its strength. The metakaolin and fly ash–slag–metakaolin exhibit the best mechanical properties when their molar ratios are 2.97 and 3.26, respectively. Through microscopic characterization using XRD, FTIR, and SEM, it is observed that fly ash–slag–metakaolin exhibits the most complete polymerization reaction, generates the most amorphous silicate aluminosilicate gel, and displays the best inter-gel bonding effect, resulting in the best mechanical properties.
Source link 
 Zhiqiang Xing www.mdpi.com


