Coatings, Vol. 15, Pages 1337: Slurry Aluminizing of Nickel Electroless Coated Nickel-Based Superalloy
Coatings doi: 10.3390/coatings15111337
Authors:
Thomas Kepa
Gilles Bonnet
Giulia Pedrizzetti
Virgilio Genova
Giovanni Pulci
Cecilia Bartuli
Fernando Pedraza
Nickel-based superalloys require protective low-activity aluminide coatings to withstand high-temperature oxidation and corrosion in turbine applications. As opposed to conventional gas processes, this study investigates the mechanisms of formation of alternative low-activity nickel aluminide coatings on the René N5 superalloy through electroless nickel pre-deposition followed by slurry aluminizing. Different thicknesses of electroless nickel layers (5, 10, 25 μm) were deposited and subsequently aluminized with varying slurry amounts (5–16 mg/cm2) under controlled heat treatments at 700–1080 °C with heating rates of 5 and 20 °C/min. Without electroless pre-deposition, high-activity coatings with refractory element precipitates formed. With electroless nickel, a precipitate-free low-activity coating developed, with thickness increasing linearly from 15 to 40 μm proportional to the initial electroless layer. An increasing slurry amount raised the overall coating thickness from 27 to 67 μm. Kirkendall porosity formed exclusively during the δ-Ni2Al3 to β-NiAl phase transformation at elevated temperature. Reducing the heating rate from 20 to 5 °C/min significantly decreased void formation by promoting more balanced Ni-Al interdiffusion. This work demonstrates that combining electroless nickel with slurry aluminizing provides an efficient route for producing low-activity coatings with controlled microstructure and minimal porosity.
Source link
Thomas Kepa www.mdpi.com

