Coatings, Vol. 15, Pages 1387: Influence of Mo Content on the Microstructure and Mechanical Properties of Cu-Mo Composites Fabricated by Mechanical Alloying and Spark Plasma Sintering
Coatings doi: 10.3390/coatings15121387
Authors:
Jie Wu
Xiuqing Li
Qingxia Yang
In this work, Mo particles were incorporated into a Cu matrix, with the hope of retaining the advantageous properties of Cu while improving its mechanical performance. Mechanical ball milling was employed to fabricate Cu-Mo composite powders with different Mo concentrations; the Mo particles were incorporated at mass fractions of 5%, 10%, 15%, and 20%, which were subsequently densified by spark plasma sintering (SPS) to achieve a high-density composite. Phase identification and microstructural analysis were performed using X-ray diffraction (XRD). Tensile strength, compressive strength, and Vickers hardness measurements were performed to evaluate the mechanical performance of the Cu-Mo composite. Microstructural characterization of the tensile specimen was conducted via electron backscatter diffraction (EBSD), energy dispersive X-ray spectroscopy (EDS), and field-emission scanning electron microscopy (FE-SEM). The results demonstrate a consistent decrease in grain size and a corresponding increase in density with higher Mo content in the composite. For Cu-15wt%Mo composite, the Vickers hardness is 135 HV, compressive strength is 300 MPa, and tensile strength is 371 MPa. Compared with pure Cu, they were increased by 74%, 115%, and 64%, respectively. The main strengthening mechanisms have been revealed. This research can offer a foundation and reference for designing and developing high-performance Cu-Mo composite.
Source link
Jie Wu www.mdpi.com

