Coatings, Vol. 16, Pages 182: Fluid–Structure Interaction Study of S-CO2 Radial Hydrodynamic Lubricated Bearings Under Different Rotational Speeds
Coatings doi: 10.3390/coatings16020182
Authors:
Chengtao Niu
Sung-Ki Lyu
Yu-Ting Wu
Zhen Qin
Shixuan Wang
Sicheng Niu
High-speed rotating machinery often demands bearings with superior load capacity and thermal stability. Here, a four-chamber radial hydrodynamic sliding bearing using supercritical carbon dioxide (S-CO2) as a lubricant is investigated to address these requirements. The work is carried out on the ANSYS Workbench 2024 R1 platform. Computational fluid dynamics (CFD) and structural mechanics are combined to build a fluid–structure interaction (FSI) numerical model. The model accounts for real-gas thermophysical property variations. S-CO2 properties are dynamically retrieved using the REFPROP database and MATLAB curve fitting. Unlike previous studies that mainly focused on hydrostatic structures and general parameters, this research examines hydrodynamic lubrication behavior under ultra-high-speed conditions. It systematically analyzes the effects of rotational speed on oil film pressure distribution, load capacity, friction coefficient, and housing deformation. It also investigates cavitation characteristics in a specific speed range. Simulation outcomes reveal that higher rotational speeds lead to an increase in both oil film load capacity and peak pressure. In particular, when the speed rises from 4000 r/min to 12,000 r/min, the maximum positive pressure increases from about 10 MPa to approximately 10.4 MPa. Meanwhile, the negative pressure region becomes significantly larger, which raises the cavitation risk and indicates a less stable lubrication state at very high speeds. These results confirm that lubrication simulations incorporating real-gas effects can reliably represent the operating behavior and provide useful guidance. It also provides new theoretical support for the design optimization and engineering application of S-CO2-lubricated bearings in high-speed machinery.
Source link
Chengtao Niu www.mdpi.com
